

Shifting IAM Left - A
CI/CD-Centric Blueprint for

Governing AI Agents and
Non-Human Identity

Author: Wyatt Bourdeau ​
Prepared By: Indigo Consulting

indigoconsulting.ca

https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo
https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo
https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo

Table Of Contents
──​
​
Introduction​ 03​
​
──​
​
I. From Managing Secrets to Governing Identity​ 04

Pillar 1: Trust Through Verifiable, Accountable Delegation​ 04
Pillar 2: Shifting Governance Left for AI Agent & NHI Security​ 05
Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why Both?​ 05

Why OAuth?​ 05
Why SPIFFE?​ 06

──​
​
II. The CI/CD Pipeline's Role: Automating Security[15]​ 07

1. Secure pattern for registration and sequenced registration:​ 07
2. Designing for Agent Types:​ 08

A. Standing Agent with Children (The "Factory" Model) [11]​ 08
B. Ephemeral Agent Instances (The "Specialist" Model)[11]​ 09

3. Standardizing Policy-As-Code:​ 10
──​
​
III. The Architect's Blueprint: The Secure Identity Lifecycle.​ 11​
​
──​
​
IV. The "Next Gen(AI) CICD": A Portrait of Modern Agent DevOps​ 13​
​
──​
​
References / Bibliography​ 14​
​
───

Introduction
The emergence of autonomous AI agents is transforming the workforce, operating as dynamic
actors that can execute complex business tasks at machine speed, essentially becoming new
"employees".[9,10].

Even continuous integration & continuous delivery (CI/CD) models that refresh secrets every few
hours or days create unacceptable windows of exposure[9], as a compromised AI agent could
have free rein with credentials until they expire. The risk extends beyond external threats;
internal issues like code flaws combined with automation speed can lead to catastrophic
outcomes, such as an ephemeral agent issuing erroneous credits or a persistent agent
inadvertently terminating a critical production database.

This rise of Non-Human Identity (NHI) presents a significant challenge: empowering this AI
workforce while effectively managing the inherent risks - Traditional security models, reliant on
static credentials and perimeter-based trust, are ill-suited for this dynamic, non-human world[3].

These scenarios highlight that the agent isn't rogue, but rather efficiently executing a flawed
directive - a single flawed directive that can trigger catastrophic financial and operational
outcomes, from issuing erroneous transactions to corrupting critical production data. This
reality necessitates a secure CI/CD framework capable of matching the velocity and adaptability
of AI.

I.​ From Managing Secrets to Governing Identity
The solution requires a paradigm shift- proactively "shifting left". Ushering critical devOps
processes such as testing, security, and QA further upstream in the development lifecycle
allows for Identity and Access Management (IAM) to leverage the CI/CD pipeline as a substrate
to embed security for NHI and AI agents from the outset.

Pillar 1: Trust Through Verifiable, Accountable Delegation
A critical principle is that an autonomous agent must never operate on its own authority; every
action must be explicitly and verifiably tied back to the human user who delegated the task,
creating an unbreakable chain of command. This establishes a non-negotiable foundation for
auditability.

This is achieved through modern identity standards:

●​ Authentication with OpenID Connect (OIDC): Verifies the human user's identity.
●​ Delegation with OAuth 2.0 Token Exchange [1]: Formalizes the "on-behalf-of" flow, where an

agent presents the user's verified identity token to receive a temporary, narrowly scoped
access token.

●​ Human-in-the-Loop with CIBA [4]: For sensitive operations, Client-Initiated Backchannel
Authentication (CIBA) provides a circuit-breaker, requiring the agent to trigger a real-time
approval request to the delegating user's device before proceeding.

●​ Securing the Request with Pushed Authorization Requests (PAR): To protect the integrity
of the initial delegation, PAR moves complex authorization parameters away from the
browser URL to a direct, secure back-channel request. This prevents request tampering and
the leakage of sensitive data in browser logs. By ensuring the user approves the exact
parameters sent by the agent, PAR strengthens the foundation of the verifiable delegation
chain.[18]

Pillar 2: Shifting Governance Left for AI Agent & NHI Security
Securing an AI agent cannot be an afterthought; a reactive posture is destined to fail. The
strategic imperative is to shift IAM left, embedding dynamic and ephemeral identity controls
directly into the DevOps lifecycle where every Non-Human Identity is created[9]. Before the
pipeline can act as a trusted registrar, it must be securely granted limited-scope ability to
register new agents via a one-time MFA delegation (ideally from a human operator).

Key tools and practices to build secure, version-controlled artifacts within the pipeline include:

●​ Policy-As-Code: The rules for who can do what are decoupled from application code, in a
standardized, version-controlled policy format with Open Policy Agent(OPA)[8], enabling
agility and clear auditing when access definitions change.

●​ Verifiable Identity: The pipeline issues a cryptographic SPIFFE [6] Verifiable Identity
Document (SVID) [12] to each agent, acting as a universal machine-passport

●​ Single-Use Tokens: For critical actions, SPARK (Single-Purpose Authentication &
Revocation Keys)[14] provides a unique token invalidated immediately after a single use,
drastically reducing the blast radius of a compromise.

●​ Just-in-Time Credentials: The agent uses its SVID to request ephemeral, task-scoped
credentials from a vault (e.g., HashiCorp Vault [13]), with lifespans measured in seconds.

Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why
Both?
Governing AI agents necessitates a multi-layered identity approach. While both OAuth 2.0 and SPIFFE are
critical, they serve distinct, yet complementary, functions in securing non-human identities.

Why OAuth?

OAuth 2.0 is foundational for authorization and delegated access. It answers "Who is the user?" and,
crucially for AI agents, "What can this software do on behalf of a user?". It provides the mechanism for an
agent to acquire temporary, narrowly scoped access tokens to interact with applications and APIs , often
formalizing the "on-behalf-of" flow where a human user delegates a task to an agent. This ensures
verifiable, accountable delegation of authority.

●​ OAuth Alone: OAuth can certainly provide client authentication (e.g., using client secrets or JWT
assertions) and then issue access tokens to an agent for resource access. For simple cases
where an agent's identity is managed solely within an IAM platform and interactions are primarily
with OAuth-protected APIs, it could technically function. However, this approach often relies on
managing client secrets, which, even if rotated, create windows of exposure. It also doesn't
inherently provide strong, cryptographically verifiable workload identity for peer-to-peer or
service-mesh communications, leaving a gap in foundational machine trust.

Why SPIFFE?

SPIFFE provides strong workload authentication and foundational machine identity. It answers "What is
this software?", giving each AI agent instance a cryptographically verifiable, platform-agnostic identity
(SVID). This allows services to mutually authenticate via mTLS, establishing trust at the network layer and
eliminating reliance on vulnerable, long-lived secrets.

●​ SPIFFE Alone: An agent using only SPIFFE could securely authenticate its own software identity
to another service, proving what it is and establishing a secure communication channel via mTLS
[18]. This approach is highly advantageous for creating foundational machine trust, as it gives
each agent a short-lived, automatically-rotated, and cryptographically verifiable identity (SVID)
without relying on vulnerable static secrets [18]. However, this model operates exclusively at the
machine-identity layer and completely lacks the concept of delegated user authority [2].

The agent can prove what it is [1], but cannot convey on whose behalf it is acting or what
specific permissions it has been granted for a user-initiated task [2]. This leaves a critical
gap in the verifiable chain of command and user-level accountability essential for
governing agentic systems.

Why Both? The Power of Layered Trust

Integrating both OAuth and SPIFFE creates a robust, multi-layered security posture:

●​ Immutable Identity + Dynamic Authorization: SPIFFE establishes the agent's
fundamental, verifiable machine identity. Once this trust is established, OAuth layers on
dynamic, just-in-time authorization, enabling the agent to acquire precisely the
permissions it needs, precisely when it needs them. This minimizes the blast radius of
any potential compromise. The CI/CD pipeline first registers the workload with SPIFFE,
then uses that new SPIFFE identity to register it as an OAuth 2.0 client.

●​ End-to-End Traceability: SPIFFE provides auditable records of workload identity, while
OAuth's token exchange and claims allow for detailed logging of delegated actions. This
creates an unbroken "chain of command" from human intent to agent action, crucial for
auditability and accountability.

●​ Reduced Attack Surface: By leveraging SPIFFE's short-lived, automatically rotated SVIDs
and OAuth's scoped, ephemeral tokens , the reliance on vulnerable static credentials is
drastically reduced.

In essence, SPIFFE validates who the agent instance is, while OAuth dictates what that agent
can do and on whose behalf. This combined approach is critical for building a secure,
auditable, and resilient AI agent workforce.

II.​ The CI/CD Pipeline's Role: Automating
Security[15]

The CI/CD pipeline has the capacity to join identity, policy, and security together as deployable
control points.

●​ Development: Policies are written as code.
●​ Test: Policies and agent interactions are automatically tested.
●​ Release: Sensitive changes require human approval via auditable controls (e.g., CIBA).
●​ Deploy: The pipeline securely registers the agent.

Automating dynamic and scalable security for NHI and agentic models consists of 3
components which address critical functions in CICD:

1. Secure pattern for registration and sequenced registration:
●​ The CI/CD pipeline first registers the workload with SPIFFE to establish its foundational

machine identity.
●​ Then, it uses that new SPIFFE identity to make a secure call to register the workload as an

OAuth 2.0 client[2].

Agent Registry Key Attributes:

●​ Agent identity in an IDP (e.g., Entra, Okta, CyberArk, Descope, Transmit [10])
●​ Scopes and permissions granted to each agent
●​ Intent and function (e.g., "purchase assistant" or "build bot")
●​ Time-to-live (TTL) and revocation information
●​ Audit trails for what the agent has done and on whose behalf Risk levels based on behavior,

scopes, and sensitivity [16]

2. Designing for Agent Types:
A. Standing Agent with Children (The "Factory" Model) [11]

●​ CI/CD Role: Deploys the standing agent and its container blueprint, granting it the authority
to register its own children.

●​ Registration: The standing agent performs Just-in-Time (JIT) registration for each child it
spins up at runtime.

●​ Deployment of Children: The standing agent programmatically spins up children by calling
the underlying compute platform's API (e.g., Kubernetes API, AWS Fargate); the CI/CD
pipeline is not involved in deploying individual children.

​
STEP

​
DESCRIPTION

1 The pipeline initiates workload attestation to prove its identity to the SPIFFE
infrastructure.

2 SPIFFE issues a cryptographic identity document (SVID) containing the Orchestrator's
SPIFFE ID and an embedded public/private key pair.

3 The pipeline calls the OAuth Dynamic Client Registration endpoint. It authenticates
using the private_key_jwt method, signing a JWT with the private key from its SVID.
The request asks for special permissions for the Orchestrator's "factory" role.

4 The OAuth server creates the client registration and returns the Orchestrator's unique
client_id and a high-privilege registration token.

5 The pipeline deploys the Orchestrator's code and securely injects the client_id and the
sensitive registration token as configuration.

6 The running Orchestrator uses its own identity to make an authenticated API call to the
SPIFFE platform to register a new child workload.

7 Recognizing the Orchestrator as a trusted "factory," the SPIFFE platform issues a new,
unique SVID for the child agent and returns it.

8 The Orchestrator performs a Just-in-Time (JIT) registration by calling the Dynamic
Client Registration endpoint, authenticating with its registration token.

9 The OAuth server validates the token, creates a JIT client registration for the child, and
returns the child's unique client_id

10 The Orchestrator configures and starts the child agent process with its newly
provisioned identity information.

11 The ephemeral child agent signals to its parent factory that its work is done.
12 The Orchestrator makes an authenticated API call to the OAuth server to DELETE the

child's client registration, ensuring no credentials are left behind.

B. Ephemeral Agent Instances (The "Specialist" Model)[11]

●​ CI/CD Role: Acts as the Master Registrar. During deployment, it pre-registers the ephemeral
agent type with both SPIFFE and the IAM platform.

●​ Registration: Each new instance of the agent attests to the SPIFFE infrastructure at runtime
to get its own unique SVID, but all instances share the same pre-registered OAuth 2.0
client_id.

●​ Token Acquisition: Each agent is responsible for performing its own Just-in-Time (JIT)
authorization flow when it wakes up to handle a request.

​
STEP

​
DESCRIPTION

1 The CI/CD pipeline first establishes its own trusted identity by attesting to the SPIFFE platform.

2 The SPIFFE platform returns an SVID for the pipeline itself, which it will use to authenticate the
next step.

3 The pipeline performs a one-time Dynamic Client Registration for the agent type, authenticating
with its own SVID. This registration is intended to be long-lived and shared.

4 The OAuth server creates the client registration and returns a single, shared client_id that will be
used by all instances of this ephemeral agent.

5 A new agent instance starts and initiates workload attestation to prove it is a legitimate
instance of the pre-defined workload type.

6 The SPIFFE platform validates the attestation and issues a unique, short-lived SVID that belongs
only to this running instance for its brief lifecycle.

7 The agent makes a token request, identifying itself with the SHARED client_id but authenticating
the request by signing a JWT assertion with the private key from its UNIQUE instance SVID.

8 The OAuth server validates the instance's unique signature and issues a temporary,
narrowly-scoped access token for the agent to use.

9 The agent uses the access token to perform its task. Once complete, the instance is destroyed,
and its SVID and access token expired, leaving no standing credentials.

3. Standardizing Policy-As-Code:
●​ Service Access Policy: Defines which users can make which requests to which AI agents.
●​ User Authorization Policy: Defines the permissions a user has for a specific tool.
●​ Agent Capabilities Policy: Defines the maximum technical permissions of an AI agent.

○​ Note: The final permission is the intersection of the User and Agent policies.
●​ Delegation (MCP) Policy: Defines which agents can delegate tasks to which other agents.

Policy Definition

POLICY TYPE TARGET WHERE IT LIVES WHAT IT CONTROLS HOW IT’S
ENFORCED

Authorization Policy Service
Access
Policy

Centralized
Authorization
Platform

Which users can invoke
which agents, and for what
specific types of actions or
intents (e.g., Alice can ask
the 'Calendar Agent' to read
events, but not to delete
them).

This is the "front
door" check. It is
evaluated by a
gateway or the agent
itself upon receiving
an initial user
request, before any
other action is taken.

Authorization Policy User
Authorization
Policy

Resource
Code-Base/Externaliz
ed Administration
Platform

The fine-grained
permissions a specific user
is entitled to for a
downstream tool (e.g., Alice
can read her own calendar).

This policy is
evaluated by the
Authorization
Platform when an
agent requests an
"action token." It is a
key input in
determining the final,
scoped permissions.

Authorization Policy Agent
Capability
Policy

Agent
code-base/Externalize
d Administration
Platform

The maximum technical
permissions an AI agent is
capable of performing on a
downstream tool (e.g., the
agent can read and create
calendar events).

This policy is also
evaluated by the
Authorization
Platform during a
token request. The
final permission is
the intersection of
this policy and the
User Authorization
Policy.

Delegation Policy Delegation
(MCP) Policy

Agent
code-base/Externalize
d Administration
Platform

Which AI agents are
allowed to delegate tasks
to which other AI agents,
and what permissions they
are allowed to pass along.

This policy is
evaluated by the
Authorization
Platform during an
OAuth 2.0 Token
Exchange when one
agent requests a
new, delegated token
for another agent.

III.​ The Architect's Blueprint: The Secure Identity
Lifecycle.

This blueprint outlines how key components and principles above can be applied within the NHI
and AI Agents CI/CD lifecycle:

CI/CD PHASE Architectural Integration &
Key Technologies Governing Principle & Lenses

PLAN

Threat Model the Agent's
Identity: Define its purpose

and maximum blast
radius.

Define Policy-as-Code
(PaC): Pre-author

high-level Delegation
Policies and fine-grained

Permission Policies
(e.g., OPA/Cedar for

specific resource
access)[8] .

Proactive Governance:
We design the agent's
rights, limitations, and

"corporate identity"
before it exists.

CODE / DEVELOP

Implement Policies in Git:
All PaC files are

version-controlled
alongside agent logic.

Static Analysis Security
Testing (SAST): The CI
pipeline scans IaC for

overly permissive roles
and PaC files for logical

flaws before merge.

Shift Left Identity: The
agent's identity and
access controls are

treated as code and are
scanned for flaws early

and often.

BUILD

OAuth 2.0 Dynamic
Client Registration: The
pipeline makes an API

call to dynamically
create a unique identity

for the agent in the
enterprise IAM platform.

Cryptographic Signing:
The final agent artifact
is signed to ensure its

integrity.

Automated
Identity

Lifecycle:
Eliminates

manual
configuration

and ensures no
"rogue" agent

can be deployed
without

originating from
a sanctioned,

auditable
pipeline.

TEST

Adversarial Red
Teaming: Actively try to

jailbreak the agent to
bypass its guardrails,

addressing risk.

Live Policy Simulation:
Test policy changes in a
"shadow mode" against

production traffic to
predict their impact
before deployment.

Behavioral
Verification: We

test that the
agent acts in

accordance with
the identity and

policies we
designed for it.

RELEASE

Human-in-the-Loop
Approval Gate: A

product owner formally
attests that "Version 2.1

of the 'Billing Agent'
identity is approved for

production use."

Governance &
Attestation: We create a
formal, auditable record

of a specific identity
version being vetted
and authorized for

production.

DEPLOY

Progressive (Canary)
Rollout: A GitOps

controller deploys the
agent/policy change to a

small subset of traffic first

Workload Identity
Federation[7]: The

pipeline orchestrates the
issuance of a workload

identity (e.g., SPIFFE
SVID) to the running

agent, enabling keyless
authentication[8].

Just-in-Time Access &
Controlled Blast Radius:

The agent's broad
potential identity is

exchanged for a weak,
ephemeral identity, and

the impact of any
flawed logic is

minimized.

OPERATE / MONITOR

Runtime Anomaly
Detection & Egress
Controls: Monitor

outbound API calls; if a
persistent agent deviates

from its baseline, its
identity is automatically

revoked.

Resource Limiting:
Enforce strict limits on
ephemeral agents to

contain costs and
prevent abuse during
their short lifespan.

Continuous Verification
& Zero Trust: Trust is
never permanent. The
agent's live actions are

constantly checked
against the minimal
permissions it was

granted .

GOVERNANCE

​
Identity Lifecycle

Automation: The entire
lifecycle, from dynamic

registration to automated
revocation, is managed as
a continuous, automated

process.

Continuous Access
Certification: Attestation

shifts from periodic
reviews to an

automated, event-driven
process, including

pre-release approvals
and runtime behavioral

verification.

Auditable Traceability:
The process creates a

verifiable and
cryptographic audit trail

from the human
delegation of authority

to every action
performed by the agent

Perpetual
Governance: The

IGA paradigm
shifts from

periodic, manual
reviews to a

state of
continuous,
automated

verification and
attestation
embedded

directly in the
DevOps lifecycle.

IV.​ The "Next Gen(AI) CICD": A Portrait of Modern
Agent DevOps

A successful implementation of this blueprint transforms an organization's security posture
from reactive and fragmented to proactive and unified. This "golden state" is characterized by
three strategic outcomes:

●​ Frictionless Governance: Security becomes a fully integrated, automated component of the

development lifecycle, allowing developers to innovate rapidly with preventative pipeline
gates enforcing security and identity policies.​

●​ Verifiable Trust: Every significant action by any Non-Human Identity has a clear,
unbreakable, and cryptographic audit trail back to the specific human who delegated the
authority, ensuring provable compliance and accountability.​

●​ Automated Resilience: The organization gains a high-velocity "immune system" that can
remediate threats at machine speed. When flawed policies or rogue agent behavior are
detected, an automated, API-driven response revokes identity and rolls back changes in
seconds. This resilience provides leadership with the confidence to fully embrace the
power of an autonomous AI workforce.​

Securing the next generation of AI agents requires moving beyond simply fetching secrets at
runtime. By embedding governance, ephemerality, and rapid, API-driven revocation into the very
DNA of every AI agent, organizations align with the core principles of a Zero Trust Architecture
(NIST SP 800-207) [3]. This approach directly addresses the risks of unmanaged NHI highlighted
in modern threat models like the OWASP Top 10 for Large Language Model Applications [5].

By aggressively shifting IAM left, the pipeline transforms from a simple deployment tool into a
control plane for automated NHI security architecture - The ability to turn the NHI tide of
exponential risk into exponential value, will differentiate the Enterprises that thrive in the age
of AI [10].

References / Bibliography
1.​ IETF RFC 8693: OAuth 2.0 Token Exchange, Internet Engineering Task Force (IETF),

https://datatracker.ietf.org/doc/html/rfc8693
2.​ IETF RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol, Internet Engineering

Task Force (IETF), https://datatracker.ietf.org/doc/html/rfc7591
3.​ NIST Special Publication 800-207: Zero Trust Architecture, National Institute of

Standards and Technology (NIST),
https://csrc.nist.gov/publications/detail/sp/800-207/final

4.​ Financial-grade API (FAPI) CIBA Profile, OpenID Foundation,
https://openid.net/specs/openid-financial-api-ciba-wd-01.html

5.​ OWASP Top 10 for Large Language Model Applications, Open Web Application Security
Project (OWASP) Foundation,
https://owasp.org/www-project-top-10-for-large-language-model-applications/

6.​ Secure Production Identity Framework for Everyone (SPIFFE), The Linux Foundation /
CNCF, https://spiffe.io/

7.​ Best practices for using Workload Identity Federation, Google Cloud,
https://cloud.google.com/iam/docs/workload-identity-federation-best-practices

8.​ Open Policy Agent (OPA) Documentation, The Linux Foundation / CNCF,
https://www.openpolicyagent.org/docs/latest/

9.​ Managing Privileged Access in a CI/CD World, Gartner, Inc.,
https://www.gartner.com/en/documents/3981267 (Note: Access may be gated)

10.​The State of Secure Identity, Okta, Inc.,
https://www.okta.com/report/state-of-secure-identity-report/

11.​Stateful vs Stateless Agents in IT Ops: Design Considerations, Algomox
https://www.algomox.com/resources/blog/stateful_vs_stateless_it_agents.html

12.​SPIFFE Verifiable Identity Document, OASIS Security,
https://www.oasis.security/glossary/spiffe-verifiable-identity-document

13.​Understand static and dynamic secrets, HashiCorp, Inc.,
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-sec
rets

14.​Single-Purpose Authentication & Revocation Keys (SPARK), NHI Magazine,
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocatio
n-keys-spark/

15.​7-proven-tips-to-secure-ai-agents-from-cyber-attacks, jit.io,​
https://www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-atta
cks

16.​Why agent fabrics and registries are central to AI identity security, Strata.io​
https://www.strata.io/blog/agentic-identity/agent-fabrics-registries-central-2b/

17.​Secure Production Identity Framework for Everyone (SPIFFE), The Linux Foundation /
CNCF, https://spiffe.io/

18.​OAuth 2.0 Pushed Authorization Requests, IETF,
https://datatracker.ietf.org/doc/html/rfc9126

https://datatracker.ietf.org/doc/html/rfc8693
https://datatracker.ietf.org/doc/html/rfc8693
https://datatracker.ietf.org/doc/html/rfc7591
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://www.google.com/search?q=https://openid.net/specs/openid-financial-api-ciba-wd-01.html
https://www.google.com/search?q=https://openid.net/specs/openid-financial-api-ciba-wd-01.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://spiffe.io/
https://www.google.com/search?q=https://cloud.google.com/iam/docs/workload-identity-federation-best-practices
https://www.google.com/search?q=https://cloud.google.com/iam/docs/workload-identity-federation-best-practices
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/
https://www.gartner.com/en/documents/3981267
https://www.gartner.com/en/documents/3981267
https://www.google.com/search?q=https://www.okta.com/report/state-of-secure-identity-report/
https://www.okta.com/report/state-of-secure-identity-report/
https://www.algomox.com/resources/blog/stateful_vs_stateless_it_agents.html
https://www.algomox.com/resources/blog/stateful_vs_stateless_it_agents.html
https://www.oasis.security/glossary/spiffe-verifiable-identity-document
https://www.oasis.security/glossary/spiffe-verifiable-identity-document
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-attacks
https://www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-attacks
https://www.strata.io/blog/agentic-identity/agent-fabrics-registries-central-2b/
https://spiffe.io/
https://datatracker.ietf.org/doc/html/rfc9126

	Introduction
	I.​From Managing Secrets to Governing Identity
	Pillar 1: Trust Through Verifiable, Accountable Delegation
	Pillar 2: Shifting Governance Left for AI Agent & NHI Security
	Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why Both?
	Why OAuth?
	Why SPIFFE?

	II.​The CI/CD Pipeline's Role: Automating Security[15]
	
	
	1. Secure pattern for registration and sequenced registration:
	2. Designing for Agent Types:
	A. Standing Agent with Children (The "Factory" Model) [11]
	
	B. Ephemeral Agent Instances (The "Specialist" Model)[11]

	3. Standardizing Policy-As-Code:
	

	III.​The Architect's Blueprint: The Secure Identity Lifecycle.
	

	IV.​The "Next Gen(AI) CICD": A Portrait of Modern Agent DevOps
	References / Bibliography

