INDIGO;,

Shifting IAM Left - A
Cl/CD-Centric Blueprint for
Governing Al Agents and

Non-Human ldentity

indigoconsulting.ca

Best) Best) Best)
Workplaces Workplaces Workplaces
in Quebec in Technology

rea =

o [o{-]
Te

Great

re
Place
To

e
CANADA To CANADA
Work. 2025 ork. 2025

CANADA

https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo
https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo
https://www.indigoconsulting.ca/?utm_source=whitepaper&utm_medium=logo

Table Of Contents

INDIG

Introduction

03

I. From Managing Secrets to Governing Identity
Pillar 1: Trust Through Verifiable, Accountable Delegation
Pillar 2: Shifting Governance Left for Al Agent & NHI Security
Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why Both?
Why OAuth?
Why SPIFFE?

04
04
05
05
05
06

Il. The CI/CD Pipeline's Role: Automating Security["’]
1. Secure pattern for registration and sequenced registration:
2. Designing for Agent Types:
A. Standing Agent with Children (The "Factory" Model) [']
B. Ephemeral Agent Instances (The "Specialist” Model)["]
3. Standardizing Policy-As-Code:

07
07
08
08
09
10

lll. The Architect's Blueprint: The Secure Identity Lifecycle.

11

IV. The "Next Gen(Al) CICD": A Portrait of Modern Agent DevOps

13

References / Bibliography

14

INDIGO},

Introduction

The emergence of autonomous Al agents is transforming the workforce, operating as dynamic
actors that can execute complex business tasks at machine speed, essentially becoming new
"employees”.[>"7].

Even continuous integration & continuous delivery (CI/CD) models that refresh secrets every few
hours or days create unacceptable windows of exposurel[’], as a compromised Al agent could
have free rein with credentials until they expire. The risk extends beyond external threats;
internal issues like code flaws combined with automation speed can lead to catastrophic
outcomes, such as an ephemeral agent issuing erroneous credits or a persistent agent
inadvertently terminating a critical production database.

This rise of Non-Human Identity (NHI) presents a significant challenge: empowering this Al
workforce while effectively managing the inherent risks - Traditional security models, reliant on
static credentials and perimeter-based trust, are ill-suited for this dynamic, non-human world[?].

These scenarios highlight that the agent isn't rogue, but rather efficiently executing a flawed
directive - a single flawed directive that can trigger catastrophic financial and operational

outcomes, from issuing erroneous transactions to corrupting critical production data. This
reality necessitates a secure CI/CD framework capable of matching the velocity and adaptability
of Al

I. From Managing Secrets to Governing Identity

The solution requires a paradigm shift- proactively "shifting left". Ushering critical devOps
processes such as testing, security, and QA further upstream in the development lifecycle
allows for Identity and Access Management (IAM) to leverage the CI/CD pipeline as a substrate
to embed security for NHI and Al agents from the outset.

INDIGO},

Pillar 1: Trust Through Verifiable, Accountable Delegation

A critical principle is that an autonomous agent must never operate on its own authority; every
action must be explicitly and verifiably tied back to the human user who delegated the task,
creating an unbreakable chain of command. This establishes a non-negotiable foundation for
auditability.

This is achieved through modern identity standards:

Authentication with OpenlD Connect (OIDC): Verifies the human user's identity.

Delegation with OAuth 2.0 Token Exchange [']: Formalizes the "on-behalf-of" flow, where an
agent presents the user's verified identity token to receive a temporary, narrowly scoped
access token.

e Human-in-the-Loop with CIBA [*]: For sensitive operations, Client-Initiated Backchannel
Authentication (CIBA) provides a circuit-breaker, requiring the agent to trigger a real-time
approval request to the delegating user's device before proceeding.

e Securing the Request with Pushed Authorization Requests (PAR): To protect the integrity
of the initial delegation, PAR moves complex authorization parameters away from the
browser URL to a direct, secure back-channel request. This prevents request tampering and
the leakage of sensitive data in browser logs. By ensuring the user approves the exact
parameters sent by the agent, PAR strengthens the foundation of the verifiable delegation
chain.['€]

Pillar 2: Shifting Governance Left for Al Agent & NHI Security

Securing an Al agent cannot be an afterthought; a reactive posture is destined to fail. The
strategic imperative is to shift IAM left, embedding dynamic and ephemeral identity controls
directly into the DevOps lifecycle where every Non-Human Identity is created[9]. Before the
pipeline can act as a trusted registrar, it must be securely granted limited-scope ability to
register new agents via a one-time MFA delegation (ideally from a human operator).

Key tools and practices to build secure, version-controlled artifacts within the pipeline include:

e Policy-As-Code: The rules for who can do what are decoupled from application code, in a
standardized, version-controlled policy format with Open Policy Agent(OPA)[®], enabling
agility and clear auditing when access definitions change.

e Verifiable Identity: The pipeline issues a cryptographic SPIFFE [¢] Verifiable Identity

Document (SVID) ['?] to each agent, acting as a universal machine-passport

e Single-Use Tokens: For critical actions, SPARK (Single-Purpose Authentication &
Revocation Keys)['¥] provides a unique token invalidated immediately after a single use,
drastically reducing the blast radius of a compromise.

e Just-in-Time Credentials: The agent uses its SVID to request ephemeral, task-scoped
credentials from a vault (e.g., HashiCorp Vault ['¥]), with lifespans measured in seconds.

INDIGO}

Just-in-Time (JIT) Security for Al Agents

Automate Enforcement: Integrate security directly into DevOps processes.

Use Temporary Credentials: Limit the scope and duration of access for credentials.
Grant Access on Trigger: Ensure access is provided only when needed.

Revoke Access After Use: Prevent unauthorized access by expiring credentials.
Log Access Events: Record events for auditing and accountability.

Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why
Both?

Governing Al agents necessitates a multi-layered identity approach. While both OAuth 2.0 and SPIFFE are
critical, they serve distinct, yet complementary, functions in securing non-human identities.

Why OAuth?

OAuth 2.0 is foundational for authorization and delegated access. It answers "Who is the user?" and,
crucially for Al agents, "What can this software do on behalf of a user?". It provides the mechanism for an
agent to acquire temporary, narrowly scoped access tokens to interact with applications and APIs, often
formalizing the "on-behalf-of" flow where a human user delegates a task to an agent. This ensures
verifiable, accountable delegation of authority.

e OAuth Alone: OAuth can certainly provide client authentication (e.g., using client secrets or JWT
assertions) and then issue access tokens to an agent for resource access. For simple cases
where an agent's identity is managed solely within an IAM platform and interactions are primarily
with OAuth-protected APIs, it could technically function. However, this approach often relies on
managing client secrets, which, even if rotated, create windows of exposure. It also doesn't
inherently provide strong, cryptographically verifiable workload identity for peer-to-peer or
service-mesh communications, leaving a gap in foundational machine trust.

Why SPIFFE?

SPIFFE provides strong workload authentication and foundational machine identity. It answers "What is
this software?", giving each Al agent instance a cryptographically verifiable, platform-agnostic identity
(SVID). This allows services to mutually authenticate via mTLS, establishing trust at the network layer and
eliminating reliance on vulnerable, long-lived secrets.

e SPIFFE Alone: An agent using only SPIFFE could securely authenticate its own software identity
to another service, proving what it is and establishing a secure communication channel via mTLS
['®]. This approach is highly advantageous for creating foundational machine trust, as it gives
each agent a short-lived, automatically-rotated, and cryptographically verifiable identity (SVID)
without relying on vulnerable static secrets ['®]. However, this model operates exclusively at the
machine-identity layer and completely lacks the concept of delegated user authority [?].

INDIGO}

The agent can prove what it is ['], but cannot convey on whose behalf it is acting or what
specific permissions it has been granted for a user-initiated task [?]. This leaves a critical
gap in the verifiable chain of command and user-level accountability essential for
governing agentic systems.

Why Both? The Power of Layered Trust

Integrating both OAuth and SPIFFE creates a robust, multi-layered security posture:

Immutable Identity + Dynamic Authorization: SPIFFE establishes the agent's
fundamental, verifiable machine identity. Once this trust is established, OAuth layers on
dynamic, just-in-time authorization, enabling the agent to acquire precisely the
permissions it needs, precisely when it needs them. This minimizes the blast radius of
any potential compromise. The CI/CD pipeline first registers the workload with SPIFFE,
then uses that new SPIFFE identity to register it as an OAuth 2.0 client.

End-to-End Traceability: SPIFFE provides auditable records of workload identity, while
OAuth's token exchange and claims allow for detailed logging of delegated actions. This
creates an unbroken "chain of command" from human intent to agent action, crucial for
auditability and accountability.

Reduced Attack Surface: By leveraging SPIFFE's short-lived, automatically rotated SVIDs
and OAuth's scoped, ephemeral tokens , the reliance on vulnerable static credentials is
drastically reduced.

In essence, SPIFFE validates who the agent instance is, while OAuth dictates what that agent
can do and on whose behalf. This combined approach is critical for building a secure,
auditable, and resilient Al agent workforce.

The CI/CD Pipeline's Role: Automating
Security["]

The CI/CD pipeline has the capacity to join identity, policy, and security together as deployable
control points.

Development: Policies are written as code.

Test: Policies and agent interactions are automatically tested.

Release: Sensitive changes require human approval via auditable controls (e.g., CIBA).
Deploy: The pipeline securely registers the agent.

Automating dynamic and scalable security for NHI and agentic models consists of 3
components which address critical functions in CICD:

INDIGO}

1. Secure pattern for registration and sequenced registration:

The CI/CD pipeline first registers the workload with SPIFFE to establish its foundational
machine identity.

Then, it uses that new SPIFFE identity to make a secure call to register the workload as an
OAuth 2.0 client[¥.

Agent Registry Key Attributes:

Agent identity in an IDP (e.g., Entra, Okta, CyberArk, Descope, Transmit ['])

Scopes and permissions granted to each agent

Intent and function (e.g., "purchase assistant" or "build bot")

Time-to-live (TTL) and revocation information

Audit trails for what the agent has done and on whose behalf Risk levels based on behavior,
scopes, and sensitivity ['°]

R e IO S N
Regis

¢ Agent identity in an IDP
AGENTII (e.g., Entra, Okta, CyberArk, Descope, Transmit JHCY

[10])
* Scopes and permissions granted to each agent

¢ Intent and function
(e.g., "purchase assistant" or "build bot")

e Time-to-live (TTL) and revocation information:
Audit trails for what the agent has done and on
whose behalf Risk levels based on behavior,
scopes, and sensitivity [16]

2. Designing for Agent Types:

A. Standing Agent with Children (The "Factory" Model) ["']

CI/CD Role: Deploys the standing agent and its container blueprint, granting it the authority
to register its own children.

Registration: The standing agent performs Just-in-Time (JIT) registration for each child it
spins up at runtime.

Deployment of Children: The standing agent programmatically spins up children by calling
the underlying compute platform's API (e.g., Kubernetes API, AWS Fargate); the CI/CD
pipeline is not involved in deploying individual children.

INDIGO}

DEPLOY-TIME
Orchestrator Registration

RUN-TIME
Child Agent Lifecycle

CICD Pipeline

SPIFFE OAuth Server Orchestrator Child Agent
Platform (AuthZ Server) Agent (ephemeral)

A

e |
(4]
(5]

. O

\ /

Y

DESCRIPTION

1 The pipeline initiates workload attestation to prove its identity to the SPIFFE
infrastructure.

2 SPIFFE issues a cryptographic identity document (SVID) containing the Orchestrator's
SPIFFE ID and an embedded public/private key pair.

3 The pipeline calls the OAuth Dynamic Client Registration endpoint. It authenticates
using the private_key_jwt method, signing a JWT with the private key from its SVID.
The request asks for special permissions for the Orchestrator's "factory" role.

4 The OAuth server creates the client registration and returns the Orchestrator's unique
client_id and a high-privilege registration token.

5 The pipeline deploys the Orchestrator's code and securely injects the client_id and the
sensitive registration token as configuration.

6 The running Orchestrator uses its own identity to make an authenticated API call to the
SPIFFE platform to register a new child workload.

7 Recognizing the Orchestrator as a trusted "factory," the SPIFFE platform issues a new,
unique SVID for the child agent and returns it.

8 The Orchestrator performs a Just-in-Time (JIT) registration by calling the Dynamic
Client Registration endpoint, authenticating with its registration token.

9 The OAuth server validates the token, creates a JIT client registration for the child, and
returns the child's unique client_id

10 The Orchestrator configures and starts the child agent process with its newly
provisioned identity information.

11 The ephemeral child agent signals to its parent factory that its work is done.

12 The Orchestrator makes an authenticated API call to the OAuth server to DELETE the
child's client registration, ensuring no credentials are left behind.

INDIGO}

B. Ephemeral Agent Instances (The "Specialist" Model)[""]

CI/CD Role: Acts as the Master Registrar. During deployment, it pre-registers the ephemeral
agent type with both SPIFFE and the IAM platform.

Registration: Each new instance of the agent attests to the SPIFFE infrastructure at runtime
to get its own unique SVID, but all instances share the same pre-registered OAuth 2.0
client_id.

Token Acquisition: Each agent is responsible for performing its own Just-in-Time (JIT)
authorization flow when it wakes up to handle a request.

Ephemeral

- SPIFFE OAuth Server

CICD Pipeline Platform (AuthZ Server) Agent l
Instance

DEPLOY-TIME:

Child Agent Lifecycle Orchestrator Registration

oees

RUN-TIME:

DESCRIPTION

The CI/CD pipeline first establishes its own trusted identity by attesting to the SPIFFE platform.

2 The SPIFFE platform returns an SVID for the pipeline itself, which it will use to authenticate the
next step.

3 The pipeline performs a one-time Dynamic Client Registration for the agent type, authenticating
with its own SVID. This registration is intended to be long-lived and shared.

4 The OAuth server creates the client registration and returns a single, shared client_id that will be
used by all instances of this ephemeral agent.

5 A new agent instance starts and initiates workload attestation to prove it is a legitimate
instance of the pre-defined workload type.

6 The SPIFFE platform validates the attestation and issues a unique, short-lived SVID that belongs
only to this running instance for its brief lifecycle.

7 The agent makes a token request, identifying itself with the SHARED client_id but authenticating
the request by signing a JWT assertion with the private key from its UNIQUE instance SVID.

8 The OAuth server validates the instance's unique signature and issues a temporary,
narrowly-scoped access token for the agent to use.

9 The agent uses the access token to perform its task. Once complete, the instance is destroyed,
and its SVID and access token expired, leaving no standing credentials.

3. Standardizing Policy-As-Code:

INDIGO;

Service Access Policy: Defines which users can make which requests to which Al agents.
User Authorization Policy: Defines the permissions a user has for a specific tool.
Agent Capabilities Policy: Defines the maximum technical permissions of an Al agent.

o Note: The final permission is the intersection of the User and Agent policies.

POLICY TYPE

TARGET

WHERE IT LIVES

WHAT IT CONTROLS

Delegation (MCP) Policy: Defines which agents can delegate tasks to which other agents.

HOW IT'S

ENFORCED

This is the "front

Authorization
Policy

Code-Base/Externaliz
ed Administration
Platform

permissions a specific user
is entitled to for a

downstream tool (e.g., Alice
can read her own calendar).

Authorization Policy Service Centralized Which users can invoke .y .
. . door" check. ltis
Access Authorization which agents, and for what evaluated by a
Policy Platform specific types of actions or
) i gateway or the agent
intents (e.g., Alice can ask : P
X) itself upon receiving
the 'Calendar Agent' to read o
an initial user
events, but not to delete
th request, before any
em). other action is taken.
This policy is
Authorization Policy User Resource The fine-grained poficy

evaluated by the
Authorization
Platform when an
agent requests an
"action token." It is a
key input in
determining the final,
scoped permissions.

This policy is also

d Administration
Platform

to which other Al agents,
and what permissions they
are allowed to pass along.

Authorization Policy Agent Agent The maximum technical
. . . . evaluated by the
Capability code-base/Externalize permissions an Al agent is Authorization
Policy d Administration capable of performing on a .
Platform during a
Platform downstream tool (e.g., the
token request. The
agent can read and create L
lend ts) final permission is
calendar events). the intersection of
this policy and the
User Authorization
Policy.
. . .) This policy is
Delegation Policy Delegation Agent Which Al agents are
.) evaluated by the
(MCP) Policy code-base/Externalize allowed to delegate tasks

Authorization
Platform during an
OAuth 2.0 Token
Exchange when one
agent requests a
new, delegated token
for another agent.

Il
Lifecycle.

INDIG

The Architect's Blueprint: The Secure Identity

This blueprint outlines how key components and principles above can be applied within the NHI

and Al Agents CI/CD lifecycle:

Architectural Integration &

CLERIELIASE Key Technologies

Governing Principle & Lenses

Threat Model the Agent's
Identity: Define its purpose
and maximum blast
radius.

PLAN

Define Policy-as-Code
(PaC): Pre-author
high-level Delegation
Policies and fine-grained
Permission Policies
(e.g., OPA/Cedar for
specific resource
access)[8] .

Proactive Governance:
We design the agent's
rights, limitations, and
"corporate identity"
before it exists.

Implement Policies in Git:
All PaC files are
version-controlled
alongside agent logic.

CODE / DEVELOP

Static Analysis Security
Testing (SAST): The CI
pipeline scans laC for
overly permissive roles
and PaC files for logical
flaws before merge.

Shift Left Identity: The
agent's identity and
access controls are

treated as code and are
scanned for flaws early
and often.

BUILD

OAuth 2.0 Dynamic
Client Registration: The
pipeline makes an API
call to dynamically
create a unique identity
for the agent in the
enterprise IAM platform.

Cryptographic Signing:

The final agent artifact

is signed to ensure its
integrity.

Automated
Identity
Lifecycle:
Eliminates
manual
configuration
and ensures no
"rogue” agent
can be deployed
without
originating from
a sanctioned,

TEST

auditable
pipeline.
Behavioral
Adversarial Red Live Policy Simulation: Verification: We
Test policy changes in a test that the

Teaming: Actively try to
jailbreak the agent to
bypass its guardrails,

addressing risk.

"shadow mode" against
production traffic to
predict their impact
before deployment.

agent acts in
accordance with
the identity and

policies we
designed for it.

RELEASE

Human-in-the-Loop
Approval Gate: A
product owner formally
attests that "Version 2.1
of the 'Billing Agent'
identity is approved for
production use."

Governance &
Attestation: We create a
formal, auditable record

of a specific identity

version being vetted

and authorized for
production.

INDIGO}

Progressive (Canary)
Rollout: A GitOps
controller deploys the
agent/policy change to a
small subset of traffic first

DEPLOY

Workload Identity
Federation[7]: The
pipeline orchestrates the
issuance of a workload
identity (e.g., SPIFFE
SVID) to the running
agent, enabling keyless
authentication[8].

Just-in-Time Access &
Controlled Blast Radius:
The agent's broad
potential identity is
exchanged for a weak,
ephemeral identity, and
the impact of any
flawed logic is
minimized.

Runtime Anomaly
Detection & Egress
Controls: Monitor
outbound API calls; if a
persistent agent deviates
from its baseline, its
identity is automatically
revoked.

OPERATE / MONITOR

Resource Limiting:
Enforce strict limits on
ephemeral agents to
contain costs and
prevent abuse during
their short lifespan.

Continuous Verification
& Zero Trust: Trust is
never permanent. The

agent's live actions are

constantly checked

against the minimal

permissions it was
granted .

Identity Lifecycle
Automation: The entire
lifecycle, from dynamic

registration to automated

revocation, is managed as

a continuous, automated
process.

GOVERNANCE

Continuous Access
Certification: Attestation
shifts from periodic
reviews to an
automated, event-driven
process, including
pre-release approvals
and runtime behavioral
verification.

Auditable Traceability:
The process creates a
verifiable and
cryptographic audit trail
from the human
delegation of authority
to every action
performed by the agent

Perpetual
Governance: The
IGA paradigm
shifts from
periodic, manual
reviews to a
state of
continuous,
automated
verification and
attestation
embedded
directly in the

DevOps lifecycle.

INDIGO}

IV. The "Next Gen(Al) CICD": A Portrait of Modern
Agent DevOps

A successful implementation of this blueprint transforms an organization's security posture
from reactive and fragmented to proactive and unified. This "golden state" is characterized by
three strategic outcomes:

e Frictionless Governance: Security becomes a fully integrated, automated component of the
development lifecycle, allowing developers to innovate rapidly with preventative pipeline
gates enforcing security and identity policies.

e Verifiable Trust: Every significant action by any Non-Human Identity has a clear,
unbreakable, and cryptographic audit trail back to the specific human who delegated the
authority, ensuring provable compliance and accountability.

e Automated Resilience: The organization gains a high-velocity "immune system" that can
remediate threats at machine speed. When flawed policies or rogue agent behavior are
detected, an automated, API-driven response revokes identity and rolls back changes in
seconds. This resilience provides leadership with the confidence to fully embrace the
power of an autonomous Al workforce.

Securing the next generation of Al agents requires moving beyond simply fetching secrets at
runtime. By embedding governance, ephemerality, and rapid, API-driven revocation into the very
DNA of every Al agent, organizations align with the core principles of a Zero Trust Architecture
(NIST SP 800-207) [*]. This approach directly addresses the risks of unmanaged NHI highlighted
in modern threat models like the OWASP Top 10 for Large Language Model Applications [7].

By aggressively shifting IAM left, the pipeline transforms from a simple deployment tool into a
control plane for automated NHI security architecture - The ability to turn the NHI tide of
exponential risk into exponential value, will differentiate the Enterprises that thrive in the age
of Al ['7.

INDIGO}

References / Bibliography

1.

2.

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

IETF RFC 8693: OAuth 2.0 Token Exchange, Internet Engineering Task Force (IETF),

https://datatracker.ietf.org/doc/html/rfc8693
IETF RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol, Internet Engineering

Task Force (IETF), https://datatracker.ietf.org/doc/html/rfc7591

NIST Special Publication 800-207: Zero Trust Architecture, National Institute of
Standards and Technology (NIST),
https://csrc.nist.gov/publications/detail/sp/800-207/final

Financial-grade API (FAPI) CIBA Profile, OpenlD Foundation,
https://openid.net/specs/openid-financial-api-ciba-wd-01.html

OWASP Top 10 for Large Language Model Applications, Open Web Application Security
Project (OWASP) Foundation,

https://owasp.org/www-project-top-10-for-large-language-model-applications/
Secure Production Identity Framework for Everyone (SPIFFE), The Linux Foundation /

CNCEF, https://spiffe.io/
Best practices for using Workload Identity Federation, Google Cloud,

https://cloud.google.com/iam/docs/workload-identity-federation-best-practices
Open Policy Agent (OPA) Documentation, The Linux Foundation / CNCF,
https://www.openpolicyagent.org/docs/latest/

Managing Privileged Access in a Cl/CD World, Gartner, Inc.,
https://www.gartner.com/en/documents/3981267 (Note: Access may be gated)
The State of Secure Identity, Okta, Inc.,

https://www.okta.com/report/state-of-secure-identity-report/
Stateful vs Stateless Agents in IT Ops: Design Considerations, Algomox

https.//www.algomox.com/resources/blog/stateful _vs_stateless it agents.html
SPIFFE Verifiable Identity Document, OASIS Security,

https://www.oasis.security/glossary/spiffe-verifiable-identity-document
Understand static and dynamic secrets, HashiCorp, Inc.,

https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-sec
rets
S/ngle Purpose Authentlcat/on & Revocat/on Keys (SPARK), NHI Magazme

-kezs sgark/
7-proven-tips-to-secure-ai-agents-from-cyber-attacks, jit.io,
https.//www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-atta

cks
Why aqent fabrics and rea/str/es are centra/ to Al /dent/tv secur/tv Strata.io

Secure Product|on Identity Framework for Everyone (SPIFFE), The Linux Foundation /

CNCE https://spiffe.io/
OAuth 2.0 Pushed Authorization Requests, IETF,

https://datatracker.ietf.org/doc/html/rfc9126

https://datatracker.ietf.org/doc/html/rfc8693
https://datatracker.ietf.org/doc/html/rfc8693
https://datatracker.ietf.org/doc/html/rfc7591
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://www.google.com/search?q=https://openid.net/specs/openid-financial-api-ciba-wd-01.html
https://www.google.com/search?q=https://openid.net/specs/openid-financial-api-ciba-wd-01.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://spiffe.io/
https://www.google.com/search?q=https://cloud.google.com/iam/docs/workload-identity-federation-best-practices
https://www.google.com/search?q=https://cloud.google.com/iam/docs/workload-identity-federation-best-practices
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/
https://www.gartner.com/en/documents/3981267
https://www.gartner.com/en/documents/3981267
https://www.google.com/search?q=https://www.okta.com/report/state-of-secure-identity-report/
https://www.okta.com/report/state-of-secure-identity-report/
https://www.algomox.com/resources/blog/stateful_vs_stateless_it_agents.html
https://www.algomox.com/resources/blog/stateful_vs_stateless_it_agents.html
https://www.oasis.security/glossary/spiffe-verifiable-identity-document
https://www.oasis.security/glossary/spiffe-verifiable-identity-document
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://developer.hashicorp.com/vault/tutorials/get-started/understand-static-dynamic-secrets
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://nhimg.org/community/agentic-ai-and-nhis/single-purpose-authentication-revocation-keys-spark/
https://www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-attacks
https://www.jit.io/resources/devsecops/7-proven-tips-to-secure-ai-agents-from-cyber-attacks
https://www.strata.io/blog/agentic-identity/agent-fabrics-registries-central-2b/
https://spiffe.io/
https://datatracker.ietf.org/doc/html/rfc9126

	Introduction
	I.​From Managing Secrets to Governing Identity
	Pillar 1: Trust Through Verifiable, Accountable Delegation
	Pillar 2: Shifting Governance Left for AI Agent & NHI Security
	Pillar 3. Dual-Identity Imperative: Why OAuth, Why SPIFFE, Why Both?
	Why OAuth?
	Why SPIFFE?

	II.​The CI/CD Pipeline's Role: Automating Security[15]
	
	
	1. Secure pattern for registration and sequenced registration:
	2. Designing for Agent Types:
	A. Standing Agent with Children (The "Factory" Model) [11]
	
	B. Ephemeral Agent Instances (The "Specialist" Model)[11]

	3. Standardizing Policy-As-Code:
	

	III.​The Architect's Blueprint: The Secure Identity Lifecycle.
	

	IV.​The "Next Gen(AI) CICD": A Portrait of Modern Agent DevOps
	References / Bibliography

